Chemical additives improve stability of high-density lithium-ion batteries

2022-10-15 00:43:12 By : Ms. Fanny Liang

Click here to sign in with or

As our need for high-density batteries increases with widespread adoption of electric cars and alternative energy sources, improving the stability and capacity of lithium-ion batteries is a necessity. Current lithium-ion battery technology, which often uses nickel, is less stable at extreme temperatures, leading to overheating due to both temperature and high voltages. These batteries also tend to deteriorate quickly.

To solve this problem, researchers are studying new chemical combinations that can address these drawbacks. In a recent study, scientists demonstrated how a solvent and an inorganic compound additive can improve the stability and performance of lithium-ion batteries with nickel cathodes.

They published their results on Sept.12 in Nano Research.

The basics of how batteries work are the same, whether you are thinking about an industrial lithium-ion battery or an average household AA battery. The cathode is the positive electrode, the anode is the negative electrode, and between them inside the battery is a solution called the electrolyte. Positively and negatively charged ions flow through the electrolyte and a chemical reaction generates electrical energy. In this study, researchers identified a sulfolane-based liquid electrolyte with lithium perchlorate added to it as a potential solution to common lithium-ion battery drawbacks.

"For nickel-based cathodes, good low-temperature electrochemical performance is usually achieved at the expense of property and safety at room temperatures. This is because electrolytes with low melting solvents deteriorate dramatically. The high volatility and flammability of these electrolytes also limit their application at high temperatures," said professor Fang Lian at the School of Materials Science and Engineering at the University of Science and Technology Beijing in Beijing, China. By adding lithium perchlorate to the sulfolane, researchers found they could improve upon many of these drawbacks.

Sulfolane is a solvent that was originally created for use in the oil and gas industry, but it is now used in many different industrial settings because it stays stable at elevated temperatures. Lithium perchlorate is an inorganic compound that is combined with the sulfolane to help maintain the electrolyte's stability. A third chemical is added to dilute the electrolyte and help the electrolyte's stability at a wide range of temperatures.

To test how well the proposed electrolyte worked, researchers created a battery using the electrolyte and performed a series of tests and theoretical calculations.

They found that the solvent was able to maintain conductivity at a wide range of temperatures, varying from –60 to 55 degrees Celsius. In comparison, traditional electrolytes tend to solidify at temperatures below –20 degrees Celsius. Adding lithium perchlorate to the electrolyte strengthens the way the different chemicals in the electrolyte interact with each other and reduces the amount of energy required, making it easier for the electrolyte to work at lower temperatures.

"The diluted high concentration sulfolane-based electrolyte with lithium perchlorate additive realizes the wide-temperature application in high voltage cells. This combination improves the lithium-ion transference and reduces the desolvation energy, while inhibiting the continuous decomposition of the electrolyte and the acute deterioration of the cathode at high temperatures," said Lian. "Our work provides a comprehensive understanding of the molecular design of the electrolyte, facilitating the development of high energy density lithium batteries." Explore further New heat-tolerant, high-capacity capacitor created with solid electrolytes borrowed from all-solid-state batteries More information: Yixin Zhu et al, The sulfolane-based liquid electrolyte with LiClO4 additive for the wide-temperature operating high nickel ternary cathode, Nano Research (2022). DOI: 10.1007/s12274-022-4852-y Journal information: Nano Research

Provided by Tsinghua University Press Citation: Chemical additives improve stability of high-density lithium-ion batteries (2022, September 14) retrieved 14 October 2022 from https://phys.org/news/2022-09-chemical-additives-stability-high-density-lithium-ion.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

Medical research advances and health news

The latest engineering, electronics and technology advances

The most comprehensive sci-tech news coverage on the web

This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.